The FGF-2-triggered protection of cardiac subsarcolemmal mitochondria from calcium overload is mitochondrial connexin 43-dependent.
نویسندگان
چکیده
AIMS Fibroblast growth factor 2 (FGF-2) protects the heart from ischaemia- and reperfusion-induced cell death by a mechanism linked to protein kinase C (PKC)ε-mediated connexin 43 (Cx43) phosphorylation. Cx43 localizes predominantly to gap junctions, but has also been detected at subsarcolemmal (SSM), but not interfibrillar (IFM), mitochondria, where it is considered important for cardioprotection. We have now examined the effect of FGF-2 administration to the heart on resistance to calcium-induced permeability transition (mPTP) of isolated SSM vs. IFM suspensions, in relation to mitochondrial PKCε/Cx43 levels, phosphorylation, and the presence of peptide Gap27, a Cx43 channel blocker. METHODS AND RESULTS FGF-2 perfusion increased resistance to calcium-induced mPTP in SSM and IFM suspensions by 2.9- and 1.7-fold, respectively, compared with their counterparts from vehicle-perfused hearts, assessed spectrophotometrically as cyclosporine A-inhibitable swelling. The salutary effect of FGF-2 was lost in SSM, but not in IFM, in the presence of Gap27. FGF-2 perfusion increased relative levels of PKCε, phospho(p) PKCε, and Tom-20 translocase in SSM and IFM, and of Cx43 in SSM. Phospho-serine (pS) 262- and pS368-Cx43 showed a 30- and 8-fold increase, respectively, in SSM from FGF-2-treated, compared with untreated, hearts. Stimulation of control SSM with phorbol 12-myristate 13-acetate (PMA), a PKC activator, increased both calcium tolerance and mitochondrial Cx43 phosphorylation at S262 and S368. The PMA-induced phosphorylation of mitochondrial Cx43 was prevented by εV1-2, a PKCε-inhibiting peptide. CONCLUSIONS SSM are more responsive than IFM to FGF-2-triggered protection from calcium-induced mPTP, by a mitochondrial Cx43 channel-mediated pathway, associated with mitochondrial Cx43 phosphorylation at PKCε target sites.
منابع مشابه
Connexin 43 phosphorylation in subsarcolemmal mitochondria: a general cardioprotective signal targeted by fibroblast growth factor-2?
During the last years, our knowledge on the role of connexin 43 (Cx43) in myocardial pathophysiology has expanded substantially. Initially thought to participate only in propagation of the electrical impulse, Cx43 gap junction channels were later shown to mediate metabolic coupling between neighbouring cells, and to associate their fates during ischaemia and reperfusion. Cx43 was then found out...
متن کاملA journey in doxorubicin-induced cardiotoxicity with emphasizing on the role of Connexin 43 and Sirtuin-3
Cancer has become a major health problem worldwide. The reported incidence of new cancer cases is estimated at 19.3 million, with a mortality rate of 10 million in the world in 2020. There are some approaches for cancer treatment such as chemotherapy, neoadjuant surgery, hormone therapy, and radiotherapy. Chemotherapy is an aggressive form of chemical drug therapy meant to destroy rapidly growi...
متن کاملNew protein-protein interactions of mitochondrial connexin 43 in mouse heart.
Connexin 43 (Cx43), the gap junction protein involved in cell-to-cell coupling in the heart, is also present in the subsarcolemmal fraction of cardiomyocyte mitochondria. It has been described to regulate mitochondrial potassium influx and respiration and to be important for ischaemic preconditioning protection, although the molecular effectors involved are not fully characterized. In this stud...
متن کاملConnexin 43 acts as a cytoprotective mediator of signal transduction by stimulating mitochondrial K(ATP) channels in mouse cardiomyocytes.
Potassium (K+) channels in the inner mitochondrial membrane influence cell function and survival. Increasing evidence indicates that multiple signaling pathways and pharmacological actions converge on mitochondrial ATP-sensitive K+ (mitoKATP) channels and PKC to confer cytoprotection against necrotic and apoptotic cell injury. However, the molecular structure of mitoKATP channels remains unreso...
متن کاملCardiac Subsarcolemmal and Interfibrillar Mitochondria Display Distinct Responsiveness to Protection by Diazoxide
OBJECTIVE Cardiac subsarcolemmal (SSM) and interfibrillar (IFM) mitochondrial subpopulations possess distinct biochemical properties and differ with respect to their protein and lipid compositions, capacities for respiration and protein synthesis, and sensitivity to metabolic challenge, yet their responsiveness to mitochondrially active cardioprotective therapeutics has not been characterized. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cardiovascular research
دوره 103 1 شماره
صفحات -
تاریخ انتشار 2014